Problem 5086. Find the value of the sum

$$
\frac{2}{3}+\frac{8}{9}+\cdots+\frac{2 N^{2}}{3^{N}}
$$

Proposed by Kenneth Korbin, New York, NY
Solution by Ercole Suppa, Teramo, Italy
The required sum can be written as $S_{N}=\frac{2}{3^{N}} \cdot x_{N}$, where x_{n} denote the sequence

$$
x_{n}=1^{2} \cdot 3^{n-1}+2^{2} \cdot 3^{n-2}+3^{2} \cdot 3^{n-3}+\cdots+n^{2} \cdot 3^{0}
$$

Since

$$
x_{n+1}=1^{2} \cdot 3^{n}+2^{2} \cdot 3^{n-1}+3^{2} \cdot 3^{n-2}+\cdots+n^{2} \cdot 3^{1}+(n+1)^{2} \cdot 3^{0}
$$

such a sequence satisfyies the linear recurrence

$$
\begin{equation*}
x_{n+1}-3 x_{n}=(n+1)^{2} \tag{}
\end{equation*}
$$

Solving the characteristic equation $\lambda-3=0$, we get the homogeneous solutions $x_{n}=A \cdot 3^{n}$, where A is a real parameter. To determine a particular solution, we look for a solution of form $x_{n}^{(p)}=B n^{2}+C n+D$. Substituing this into the difference equation, we have

$$
\begin{aligned}
& B(n+1)^{2}+C(n+1)+D-3\left[B n^{2}+C n+D\right]=(n+1)^{2} \Longleftrightarrow \\
&-2 B n^{2}+2(B-C) n+B+C-2 D=n^{2}+2 n+1
\end{aligned}
$$

Comparing the coefficients of n and the constant terms on the two sides of this equation, we obtain

$$
B=-\frac{1}{2} \quad, \quad C=-\frac{3}{2} \quad, \quad D=-\frac{3}{2}
$$

and thus

$$
x_{n}^{(p)}=-\frac{1}{2} n^{2}-\frac{3}{2} n-\frac{3}{2}
$$

The general solution of $\left(^{*}\right)$ is is simply the sum of the homogeneous and particular solutions, i.e.

$$
x_{n}=A \cdot 3^{n}-\frac{1}{2} n^{2}-\frac{3}{2} n-\frac{3}{2}
$$

From the boundary condition $x_{1}=1$, the constant A is determined as $\frac{3}{2}$.
Finally, the desired sum is

$$
S_{N}=\frac{3^{N+1}-N^{2}-3 N-3}{3^{N}}
$$

and we are done.

